आईएसएसएन: 2157-7617

पृथ्वी विज्ञान एवं जलवायु परिवर्तन जर्नल

खुला एक्सेस

हमारा समूह 1000 से अधिक वैज्ञानिक सोसायटी के सहयोग से हर साल संयुक्त राज्य अमेरिका, यूरोप और एशिया में 3000+ वैश्विक सम्मेलन श्रृंखला कार्यक्रम आयोजित करता है और 700+ ओपन एक्सेस जर्नल प्रकाशित करता है जिसमें 50000 से अधिक प्रतिष्ठित व्यक्तित्व, प्रतिष्ठित वैज्ञानिक संपादकीय बोर्ड के सदस्यों के रूप में शामिल होते हैं।

ओपन एक्सेस जर्नल्स को अधिक पाठक और उद्धरण मिल रहे हैं
700 जर्नल और 15,000,000 पाठक प्रत्येक जर्नल को 25,000+ पाठक मिल रहे हैं

में अनुक्रमित
  • CAS स्रोत सूचकांक (CASSI)
  • सूचकांक कॉपरनिकस
  • गूगल ज्ञानी
  • शेरपा रोमियो
  • पर्यावरण में अनुसंधान तक ऑनलाइन पहुंच (ओएआरई)
  • जे गेट खोलो
  • जेनेमिक्स जर्नलसीक
  • जर्नल टीओसी
  • उलरिच की आवधिक निर्देशिका
  • कृषि में वैश्विक ऑनलाइन अनुसंधान तक पहुंच (अगोरा)
  • सेंटर फॉर एग्रीकल्चर एंड बायोसाइंसेज इंटरनेशनल (CABI)
  • RefSeek
  • हमदर्द विश्वविद्यालय
  • ईबीएससीओ एज़
  • ओसीएलसी- वर्ल्डकैट
  • प्रोक्वेस्ट सम्मन
  • एसडब्ल्यूबी ऑनलाइन कैटलॉग
  • पबलोन्स
  • यूरो पब
  • आईसीएमजेई
इस पृष्ठ को साझा करें

अमूर्त

Climatic Trend of Lapse Rate Considering the Impression of AOD over a Tropical Coastal Station

Middey A, Kumar N and Rao PS

Changes in boundary layer lapse rate with changing aerosol loading in the atmosphere bring about some interesting information concerning climate feedbacks. Aerosols have direct and indirect effects on climate system by various physical mechanisms. Some of them are well understood while some require more reasoning and interpretations. The present study used satellite derived data of Aerosol Optical Depth (AOD) and Solar Radiation along with radiosonde upper air sounding data over a coastal station Dabolim, Goa (15.38°N, 73.83°E) of India to investigate their effect on changing the boundary layer (upto 850 hPa) lapse rate over the years. Twelve years (2001- 2012) radiosonde winter season (December, January and February) data have been analyzed to develop a multiple linear regression model to predict boundary layer lapse rate over the site and subsequently a univariate Markov chain prediction model is introduced to anticipate the future scenario.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।