हमारा समूह 1000 से अधिक वैज्ञानिक सोसायटी के सहयोग से हर साल संयुक्त राज्य अमेरिका, यूरोप और एशिया में 3000+ वैश्विक सम्मेलन श्रृंखला कार्यक्रम आयोजित करता है और 700+ ओपन एक्सेस जर्नल प्रकाशित करता है जिसमें 50000 से अधिक प्रतिष्ठित व्यक्तित्व, प्रतिष्ठित वैज्ञानिक संपादकीय बोर्ड के सदस्यों के रूप में शामिल होते हैं।
ओपन एक्सेस जर्नल्स को अधिक पाठक और उद्धरण मिल रहे हैं
700 जर्नल और 15,000,000 पाठक प्रत्येक जर्नल को 25,000+ पाठक मिल रहे हैं
Young-Cheol Chang and Shintaro Kikuchi
Introduction: Only a few bacteria capable of degrading lignin have been reported. Of these bacteria, Bacillus sp. is very useful because this soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt for long periods of time. This manuscript suggests an effective biological pretreatment method for enhancing cellulase performance.
Materials and methods: An alkali lignin-degrading bacterium was isolated from forest soils and named CS-1. 16S rDNA sequence analysis indicated that CS-1 from Hokkaido from Okinawa was Bacillus sp. (100% identity with HQ727971.1).
Results: Strains CS-1 displayed alkali lignin degradation capability. With initial concentrations of 0.05–2.0 g l-1, at least 61% alkali lignin could be degraded within 48 h. The maximum lignin-degrading rate of CS-1 was estimated to be 99.5% at a concentration of 0.05 g l-1. High laccase activities were observed in crude enzyme extracts from the isolated strain. Very low (negligible) lignin peroxidase and low manganese peroxidase activities were observed. This result indicated that alkali lignin degradation was correlated with laccase activities.
Discussion: Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure [pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria (Lactobacillus bulgaricus(NBRC13953) and Streptococcus thermophiles (NBRC13957)] at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance.